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Abstract

A method for numerical investigation of nonlinear wave dynamics based on direct hydrodynamical modeling of 1-D

potential periodic surface waves is created. The model is a part of an interactive wind–wave model. Using a non-

stationary conformal mapping, the principal equations are rewritten in a surface-following coordinate system and

reduced to two simple evolutionary equations for the elevation and the velocity potential of the surface; Fourier expan-

sion is used to approximate these equations. High accuracy was confirmed by validation of the non-stationary model

against known solutions, and by comparison between the results obtained with different resolution in the horizontal.

The method developed is applied to the simulation of waves evolution with different initial conditions. Numerical exper-

iments with initially monochromatic waves with different steepness show that the model is able to simulate breaking

conditions when the surface becomes a multi-valued function of the horizontal coordinate. An estimate of the critical

initial wave height that divides between non-breaking and eventually breaking waves is obtained. Simulations of non-

linear evolution of a wave field is represented initially by two modes with close wave numbers (amplitude modulation)

and a wave field with a phase modulation. Both runs result in the appearance of large and very steep waves, these also

break if the initial amplitudes are sufficiently large.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

This paper describes the results of numerical simulation of multi-mode wave field based on a scheme

developed by Chalikov and Sheinin [12,13]. This scheme is specifically oriented to coupled simulations
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of waves and Wave Boundary Layer (WBL) [6]. This coupled model has been completed and numerical

investigation of coupled wind–wave dynamics is underway. This problem has been intensively investigated

experimentally, theoretically, and numerically (see [23,4]). All numerical investigations, based on Reynolds

equations (started by Gent and Taylor [31], and Chalikov [7]) were performed for 2-D turbulent flow above

monochromatic waves. They therefore refer to essentially steady motion. Applications of monochromatic
experimental and theoretical results for real nonlinear and multi-mode wave fields were based on linear

assumption, assuming that all variables may be obtained by simple superposition of modes with different

amplitudes. This assumption is problematic. Preliminary data show that decreasing of wave-induced pres-

sure in a downwind wave slope depends nonlinearly on wave steepness. Accordingly, for correct simulation

of wind–wave dynamic interaction a surface should have realistic geometry and valid statistical properties.

Because the development of waves (spectrum evolution) occurs at distances which are much larger, than

length of dominant wave, the periodic boundary conditions have been used. This assumption simplifies the

construction of a numerical scheme by making possible the application of the Fourier transform method. In
this study, we consider 1-D nonlinear waves only. The scheme developed in this study is very exact, allow-

ing us to produce the simulation of wave fields for periods much longer than the period of the dominant

wave. This is important because development of statistically steady structure of WBL occurs during many

periods of the dominant wave.

The main advantage of the potential motion approximation is that the system of Euler equations is re-

duced to the Laplace equation. However, the solution to the flow problem of surface wave motion is com-

plicated by the requirement of having to apply the kinematics and dynamic boundary conditions (both

nonlinear) on the free surface, the location of which is unknown at any given moment.
The problem of numerical simulation of surface waves has a long history. The most general approach to

simulate a motion with a free surface is based on a marker and cell (MAC) method [32] which assumes the

tracing of variable surface in a fixed grid with different order accuracy (for example, [44,36,47,43]). At pres-

ent, applicability of this method is restricted by simulation over relatively short-term periods. However,

accuracy of this method will increase significantly when very high resolution become possible. An advan-

tage of this method is that it can be used for simulation of 3-D rotational motion of viscous fluid even for

non-single value interface. A motion with a single-value 1-D and 2-D interface is readily simulated using

simplest surface-following coordinates (x, y, z � g(x, y)), where (x, y, z) are Cartesian coordinates and g
is a surface elevation [7]. This system of coordinates is unsteady and non-orthogonal, so equations of mo-

tion become complicated. Still, this method was effectively applied for simulation of interaction of waves

with a shear flow by Dimas and Triantafyllou [17]. Evidently, this approach may be joined with the

MAC method, applied locally in the intervals with large steepness. Waves on finite depth have been inves-

tigated by transforming the volume occupied by fluid into a rectangular domain [21]. Much more compli-

cated surface-following transformations have been constructed, even for the case of a multiple-valued

surface [56]. Grid method was generalized with adaptive grids (e.g. [30]) and in finite-volume approach [27].

Fortunately, many observed properties of surface waves are reproduced well on a basis of a potential
approach, which makes possible a reduction by 1 a dimensionality. The numerical methods for inviscid

free-surface flow have been reviewed by Mei [41], Yeung [63] and Hyman [34], and for viscous flows by

Floryan and Rasmussen [35]. The most recent review of numerical methods for incompressible nonlinear

free-surface flow was presented by Tsai and Yue [57]. We limit the scope of this review to those works pub-

lished after the last mentioned review, which is devoted to free periodic waves and based on the principal

equation for potential waves.

The simulation of nonlinear unsteady potential flow with a free surface began with the development of

the Eulerian–Lagrangian boundary integral equations by Longuet-Higgins and Cokelet [38] for steep over-
turning waves. The instability of waves was generated by asymmetric pressure applied on a surface. This

method, in principle, may be generalized for 3-D motion, but it demands the considerable computational

resources. A boundary method based on the Cauchy integral formulation for 2-D problem was developed
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by Vinje and Brevig [58], Baker et al. [1] and Roberts [48]. This method was used by Tanaka et al. [53], who

studied the instability and breaking of a solitary wave. Dommermuth et al. [20] compared the solution

based on the Cauchy integral method with precise measurements in an experimental wave tank. Good

agreement was obtained. The boundary integral method was extended by Dold and Peregrine [18] (hereaf-

ter DP), who constructed the precise scheme for performing a simulation of wave evolution with good con-
servation of invariants. Detailed description of method was given by Dold [19]. Stability of scheme was

confirmed by simulation of a steep Stokes wave for several wave periods. This scheme was used successfully

for simulation of nonlinear group effects [33]; of dynamics of steep forced waves [5], and for investigation

the onset of breaking [2,51]. An advantage of this scheme is extreme efficiency: reliable results may be ob-

tained with low resolution and with modest computer resources. For short term periods, is possibly to dis-

tribute the points non-uniformly; this allows effectively to reproduce a sharpening and overturning of

waves. In order to increase stability, the authors applied very selective smoothing. Dold [19] noted, how-

ever, that for long-term integration the advantage given by non-uniformity of the grid is absent. A sharp-
ening of waves results from nonlinear group effects, which generate a convergence of energy in physical

space [51]. It is impossible to predict the location of these events. Nonetheless, Henderson et al. [33] dem-

onstrated excellent results from long-term simulations of nonlinear evolution of wave field with an initially

uniform grid.

Another group of numerical methods is based on traditional perturbation expansions (often combined

with Fourier transform method); in principle, these include arbitrary high orders of interactions [59,22,60].

However, with increasing steepness, the number of needed Fourier modes in this scheme multiplies. Indeed,

this method becomes inapplicable when waves approach overturning. Modification of the high-order spec-
tral method was suggested by Fenton and Rienecker [28].

Craig and Sulem [14] improved stability by use the expansion for vertical velocity instead of potential.

This method was later generalized for 2-D potential waves [3]. A numerical scheme for 1-D potential waves

based on non-orthogonal surface-following coordinate system and Fourier transform was developed by

Chalikov and Liberman [8]. The method is based on iterative transfer of the potential from a fixed coor-

dinate system onto free surface and was used for successful simulation of the bound waves dynamics ob-

served by Yeung [63]. This method is also applicable to 2-D potential waves; however, it becomes

ineffective for large numbers of modes with highly variant amplitudes (also true for many methods based
on expansions). The reason on this restriction is: the small waves overrun the surface of large waves. The

amplitudes of wave disturbances with large wave numbers attenuate with depth so quickly, that they be-

come insignificant at the depth of the order of dominant wave height [64]. In this case, restoring the

high-order modes on a free surface becomes inaccurate. However, the high-order perturbation method

(and all methods based on the surface-following coordinates) represents a huge step forward from quasi-

linear theories based on small-amplitude assumption.

A numerical scheme for direct hydrodynamical modeling of 1-D nonlinear gravity and gravity-capillary

periodic waves was developed by Chalikov and Sheinin [9,10,12,13,49]. This scheme is based on conformal
mapping of a finite-depth water domain. For the stationary problem, this mapping represents the classical

complex variable method (e.g. [15,16]), thought originally developed by Stokes [52]. In a stationary problem

the method employs the velocity potential U and the stream function W as the independent variables. As we

knew recently, a non-stationary conformal mapping was introduced also by Whitney [61], and then was

considered by Kano and Nishida [37] and Fornberg [29]. Tanveer [54,55] used this approach for investiga-

tion of Rayleigh–Taylor instability and the generation of surface singularities. A new way of deriving equa-

tions, a description of a numerical scheme (and its validation) as well as the results of long-term simulations

were presented at ONR meeting in Arizona (in 1994). Later, it was described in details by Chalikov and
Sheinin [12,13] (hereafter ChSh) and in [50]. The ChSh numerical approach is based on a non-stationary

conformal mapping for finite depth which allows rewriting of the principal equations of potential flow with

a free surface in a surface-following coordinate system. The Laplace equation retains its form and the
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boundaries of the flow domain (i.e. the free surface, and, in the case of finite depth, the bottom) are coor-

dinate surfaces in the new coordinate system. Accordingly, the velocity potential in the entire domain re-

ceives a standard representation based on its Fourier expansion on the free surface. As a result, the

hydrodynamical system (without any simplifications) is represented by two relatively simple evolutionary

equations that can be solved numerically in a straightforward way. The advantages of this approach were
briefly discussed by Dyachenko et al. [25]; later the method was used by Zakharov et al. [62] to demonstrate

the nonlinear properties of steep waves. In principle, the ChSh method is similar to that based also on con-

formal mapping as developed by Meiron et al. [42]. These authors concluded that this method is applicable

only to ‘‘moderately distorted geometry’’. For simulations of the Stokes wave with peak-to-trough ampli-

tude at 80% of the theoretical maximum, they found that ‘‘time stepping errors can cause modulation of the

steady waves for times longer than t = 4p’’ (time is normalized with the length scale and gravity accelera-

tion). Our scheme allows a simulation the propagation of Stokes wave with amplitude 98% of the maximum

for hundreds of periods (and much longer) without noticeable distortions (see Fig. 1). Because Meiron et al.
[42] used the same accuracy time stepping scheme as the fourth-order Runge–Kutta scheme used in our

work, we conclude that errors in their scheme were produced simply by low resolution: for an approxima-

tion of Stokes wave profile just N = 64 points were used. We used thousands points. (Zakharov et al. [62]

used up to one million Fourier modes.) Another reason on instability might be imprecise approximation of

the initial shape of a Stokes wave. We have observed, that the stability of Stokes wave significantly depends

on the degree of truncation of Fourier series describing the wave. For example for case a = 0.42 (half of

crest-to-trough height) the Stokes wave initially assigned by five modes (with resolution 2000 modes,

8000 grid points) disintegrates to time t = 1. Exact Stokes wave runs stably the thousands of periods.
Fig. 1. Long-term evolution of amplitudes of the first 68 Fourier constituents of Stokes waves: a = 0.42 (70 constituents, left panel,

1,000,000 time steps) and a = 0.43 (96 constituents, right panel) during about 160 periods. The modes with odd numbers are shown in

both panels.
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Note that a scheme based on high resolution is very fast, so most problems may be investigated with a

personal computer.

This model represents a rarity in geophysical fluid dynamics when the equations describing the real pro-

cess can be solved with a very high accuracy (see Fig. 1). This statement is fully correct if the steepness of

waves is not high. Increasing a local steepness often results in a developing of instability thence overturning
of sharp crests. Formally, conformal mapping exists up to the moment when overturning volume of water

touch the surface (Dyachenko, 2004, personal communication). In such an evolution the number of Fourier

modes needed grows very quickly. However, if the special measures (smoothing) are not taken, the calcu-

lations usually terminate much earlier, because of strong crest instability (Longuet-Higgins and Dommer-

muth, [39]), manifested in the splitting of the falling volume into two phases. This phenomenon is obviously

non-potential. Hence, as in many branches of geophysical fluid dynamics, special measures must be taken

to prevent the numerical instabilities while concurrently accounting on the physical effects of these events.

Our method is applied to the simulation of wave field represented in initial conditions by superposition
of running waves with random phases assigned by linear theory. We show that wave fields lose this initial

structure and quickly develops new specific features. These features are more pronounced, the larger the

nonlinearity of the initial state. Of course, these properties of waves influence significantly the air flow

above.

The principal advantage of this scheme is that it combines a concise formulation and computational effi-

ciency with much greater accuracy than the existing schemes. In the case of multi-wave fields with wave

breaking, the scheme is still applicable if, as it is customary in geophysical fluid dynamics, some dissipation

mechanism is included to account for breaking effects while still preventing the numerical instability. Within
potential theory, wave breaking can only be parameterized – and it is impossible to simulate all its

consequences.

In Section 2, the conformal mapping method is introduced and the principal equations in the new coor-

dinate system are written out. The numerical scheme is described in Section 3. In Section 4, the ability of the

model to reproduce a priori known progressive wave solutions is established. Further, validation of model

simulations against higher resolution versions is discussed.

The method also is applied to the simulation of extreme waves (Section 5). Two groups of cases are con-

sidered: (1) initially monochromatic (harmonic) waves with different steepness; (2) waves with an amplitude
modulation (represented initially by two modes with adjacent wave numbers and equal amplitudes), and

with a phase modulation. For both types, we observe nonlinear growth and steepening which, if the initial

amplitudes are sufficiently large, result in wave breaking. The simulations include the final stages of evolu-

tion of the waves as solutions to the potential flow equations when the surface becomes a multi-valued func-

tion of the horizontal coordinate.

Finally (Section 6), a possible parameterization of wave breaking is briefly discussed.
2. Equations

Consider the non-dimensional form of the principal 2-D equations for potential waves written in Carte-

sian coordinates, i.e., the Laplace equation for the velocity potential U:
Uxx þ Uzz ¼ 0; ð1Þ
and the two boundary conditions at the free surface h = h(x, t): the kinematic condition
ht þ hxUx � Uz ¼ 0; ð2Þ
and the Lagrange integral
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Ut þ
1

2
ðU2

x þ U2
z Þ þ hþ pe � rhxxð1þ h2xÞ

�3
2 ¼ 0; ð3Þ
where pe is the density normalized external surface pressure. (Independent variables in subscripts denote
partial differentiation with respect to these variables.)

The equations are solved in the domain
�1 < x < 1; �H 6 z 6 hðx; tÞ; ð4Þ

where H is either a finite depth or infinity. The variables U and h are considered to be periodic with respect

to x:
Uðxþ 2p; z; tÞ ¼ Uðx; z; tÞ; hðxþ 2p; tÞ ¼ hðx; tÞ; ð5Þ

and normal velocity condition at the bottom is assumed to be zero:
Uzðx; z ¼ �H ; tÞ ¼ 0. ð6Þ

Eqs. (1)–(3) are written in the non-dimensional form with the following scales: length L, where 2pL is the

(dimensional) period in the horizontal, time L1/2g�1/2, and the velocity potential L3/2g1/2 (g is the accelera-

tion of gravity). Pressure is taken to be normalized by water density (so its scale is Lg). The last term in Eq.

(3) describes the effect of surface tension, and
r ¼ C

gL2
is a non-dimensional parameter (C � 8 · 10�5 m3 s�2 is the kinematic coefficient of surface tension for

water).

System (1)–(6) is solved as an initial value problem for the unknown functions U and h with given initial

conditions U (x, z = h(x, t = 0), t = 0) and h(x, t = 0). Note that although Eqs. (2) and (3) are for the free
surface, there are no straightforward ways to reduce the problem to a 1-D problem, since, to evaluate

Uz, one has to solve the Laplace equation (1) in the domain (4) with a curvilinear upper boundary that

may be any function of x. This difficulty is known to render integration of the system in Cartesian coordi-

nates either not sufficiently accurate or too expensive, computationally. So, for time periods much greater

than the time scale, it is largely impractical. (It is perhaps still more problematic to design an efficient

numerical scheme for the stationary version of system (1)–(6).)

To make a numerical solution feasible, we introduce a time-dependent surface-following coordinate sys-

tem that conformally maps the original domain (4) onto the strip
�1 < n < 1; � ~H 6 f < 0 ð7Þ

with a periodicity condition given as
xðn; f; sÞ ¼ xðnþ 2p; f; sÞ þ 2p;

zðn; f; sÞ ¼ zðnþ 2p; f; sÞ;
ð8Þ
where s is the new time coordinate, s = t.

According to complex variable calculus, conformal mapping (7) ! (4) exists and is unique up to an addi-

tive constant for x. Note that for the stationary problem, this mapping represents the classic complex var-

iable method (e.g. [16]) originally developed by Stokes [52], employing the velocity potential U and the

stream function W as the independent variables. In this case, it can be shown that U = �cn + U0,
W = cf + W0, where �c is the mean velocity at the bottom, with U0 and W0 as constants. In the non-station-

ary case, the mapping clearly is time-dependent and no analog of the last relations holds.

It is easily be shown that, due to periodicity condition (8), the required conformal mapping can be rep-

resented by Fourier series:
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x ¼ nþ x0ðsÞ þ
X

�M6k<M ;k 6¼0

g�kðsÞ
cosh kð1þ ~HÞ

sinh k ~H
#kðnÞ; ð9Þ

z ¼ fþ g0ðsÞ þ
X

�M6k<M ;k 6¼0

gkðsÞ
sinh kð1þ ~HÞ

sinh k ~H
#kðnÞ; ð10Þ
where gk are the coefficients of Fourier expansion of the free surface g(n, s) with respect to the new hori-

zontal coordinate n:
gðn; sÞ ¼ hðxðn; f ¼ 0; sÞ; t ¼ sÞ ¼
X

�M6k6M

gkðsÞ#kðnÞ; ð11Þ
#k denotes the functions
#kðnÞ ¼
cos kn; k P 0;

sin kn; k < 0;

�
ð12Þ
M is the truncation number (so far M = 1 is assumed). Non-traditional presentation of Fourier transform

with definition (12) is, in fact, convenient for calculations, because (#k)n = k#�k andP
ðAk#kÞn ¼ �

P
kA�k#k. Note that in presentation (12) the indexes kP 0 refer to the real part of the com-

plex presentation and k < 0 – the imaginary part. The Fourier coefficients Ak form the array A(�M :M),

what makes possible a compact programming in Fortran90.

Time-dependent x0(s) can be chosen arbitrarily, though it is convenient to assume
x0ðsÞ ¼ 0. ð13Þ

The lower boundary f ¼ � ~H cannot be chosen arbitrarily, since the relation
zðn; f ¼ � ~H ; sÞ ¼ �H ð14Þ
must hold which, after substituting expansion (10), yields
~H ¼ H þ g0ðsÞ. ð15Þ

Since g0 is determined by the Fourier expansion (11) and, generally, is an unknown function of time, ~H also

is time-dependent.

Due to conformity of the mapping, Laplace equation (1) retains its form in (n, f) coordinates. Simple

derivations based on the systematic use of Cauchy–Riemann conditions show that system (1)–(3) can be

written in the new coordinates, as follows:
Unn þ Uff ¼ 0; ð16Þ
� znxs þ xnzs ¼ Uf; ð17Þ

Us � J�1ðxnxs þ znzsÞUn þ
1

2
J�1ðU2

n � U2
fÞ þ zþ pe � rJ�3=2ð�xnnzn þ znnxnÞ ¼ 0; ð18Þ
where (17) and (18) are written for the surface f = 0 (so that z = g as represented by expansion (11)), and
J ¼ x2n þ z2n ¼ x2f þ z2f ð19Þ
is the Jacobian of the transformation. Boundary condition (6) is rewritten as
Ufðn; f ¼ � ~H ; sÞ ¼ 0. ð20Þ
The solution to the Laplace equation (16) with boundary condition (20) is readily yielded by Fourier expan-

sion, which reduces system (16)–(18) to a 1-D problem:
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U ¼
X

�M6k6M

/kðsÞ
cosh kðfþ ~HÞ

cosh k ~H
#kðnÞ; ð21Þ
where /k are Fourier coefficients of the surface potential U (n, f = 0, s). Thus, Eqs. (17) and (18) constitute a
closed system of prognostic equations for the surface functions z(n, f = 0, s) = g(n, s) and U(n, f = 0, s). (It
may also be regarded as a system of ordinary differential equations for the Fourier coefficients gk, /k.

Its explicit form would be somehow complicated; however, it is not needed, since, as described in the next

section, we use the Fourier transform method to calculate the nonlinearities.)

System (17), (18) is not resolved with respect to the time derivative of the surface elevation g(n, s). Dur-

ing numerical integration of the initial value problem, the values of the time derivative can be obtained with

a simple iterative algorithm, making use of Eq. (17) and Cauchy–Riemann relations xsn = zsf, xsf = �zsn.

However, a more efficient approach may be applied (see ChSh for references). This approach is based,
in fact, on mutual dependence the fluctuating components in definitions the conformal coordinates(n, f).
Introducing complex variables q = n + if, r(q, s) = x(n, f, s) + iz(n, f, s) and denoting
F ðn; f; sÞ ¼ Re
rs
rq

� �
; Gðn; f; sÞ ¼ Im

rs
rq

� �
; ð22Þ
Eq. (17) can be rewritten as
Gðn; f ¼ 0; sÞ ¼ ðJ�1UfÞf¼0. ð23Þ
Note that, due to conformity of the transformation, r(q, s) is an analytic function of q. So are rs = xs + izs,
rq = xn + izn and their ratio in (22). Therefore, the functions F and G are bound by the Cauchy–Riemann

relations:
F n ¼ Gf; F f ¼ �Gn. ð24Þ

Considering that G is a harmonic function of n and f and that it goes to zero at the lower boundary f ¼ � ~H
(since JG is equal to the left-hand side of (17), and at that boundary z = �H, zs = zn = 0), so that
ðF þ iGÞf¼� ~H ¼ xs
xn

� �
f¼� ~H

¼ F f¼� ~H ; ð25Þ
one may write the following expansion:
Gðn; f; sÞ ¼
X

�M6k6M ;k 6¼0

gkðsÞ
sinh kðfþ ~HÞ

sinh k ~H
#kðnÞ; ð26Þ
and relations (24) yield
F ðn; f; sÞ ¼ f0ðsÞ þ
X

�M6j6M ;j6¼0

g�kðsÞ
cosh kðfþ ~HÞ

sinh k ~H
#kðnÞ. ð27Þ
The function f0(s) can be found using assumption (13), which together with (22) yields (for any f and s):
0 ¼
Z 2p

0

xs dn ¼
Z 2p

0

ðFxn � GznÞ dn;
substituting expansions (26), (27), (9), (10), and integrating the products of the Fourier series, we obtain
f0 ¼
1

2

X
�M6k6M ;k 6¼0

kg�ksinh
�2k ~H . ð28Þ
Then, if
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gðn; sÞ ¼ Gðn; f ¼ 0; sÞ ¼
X

�M6j6M ;j6¼0

gkðsÞ#kðnÞ ð29Þ
is known,
f ðn; sÞ ¼ F ðn; f ¼ 0; sÞ ¼ f0ðsÞ þ
X

�M6j6M ;j 6¼0

g�kðsÞ cothðk ~HÞ#kðnÞ ð30Þ
is also known: f is a generalization of the Hilbert transform of g which, for k 6¼ 0, may be defined in Fourier

space as
fk ¼ g�k coth k ~H ; ð31Þ

whereas f0 is defined by (28). Thus, we can replace Eq. (17) by explicit expressions for the time derivatives xs
and zs that follow from (22). Finally, Eqs. (17) and (18) can be rewritten as a system resolved with respect to

the time derivatives (here f = 0):
zs ¼ xng þ znf ; ð32Þ

Us ¼ fUn �
1

2
J�1ðU2

n � U2
fÞ � z� pe þ rJ�3=2ð�xnnzn þ znnxnÞ; ð33Þ
where, according to (23),
g ¼ ðJ�1UfÞf¼0; ð34Þ
f is obtained from g according to (31) and (28); and the derivatives can be expressed through standard dif-

ferentiation formulae for Fourier series and hyperbolic functions (see ChSh).

Thus, the original system of equations is transformed into two simple evolutionary Eqs. (32) and (33)

and diagnostic relations (31) and (34). All equations refer to the free surface and, thus, are essentially

1-D (both spatial derivatives of U are obtained by differentiating the series (21)) and can be solved using

the Fourier transform method (see Section 3). These equations allow a precise investigation of 1-D periodic

potential waves in a broad ranges of two non-dimensional parameters: depth H and capillarity r.
For deep water (H = 1), the coefficients in expansions (28), (30) and (31) become simpler. The domain

(7) turns into the semi-plane f < 0 (z ! �1 when 1 ! �1, a condition which replaces (14)). The confor-

mal mapping (9), (10) acquires the form
x ¼ nþ x0ðsÞ þ
X

�M6k<M ;k 6¼0

g�kðsÞ expðkfÞ#kðnÞ; ð35Þ

z ¼ fþ g0ðsÞ þ
X

�M6k<M ;k 6¼0

gkðsÞ expðkfÞ#kðnÞ; ð36Þ
the solution (21) of the Laplace equation (16) becomes
U ¼
X

�M6k6M

/kðsÞ expðkfÞ#kðnÞ; ð37Þ
operator (30) becomes a conventional Hilbert transform and its Fourier space representation (31) and (28)

turns into
fk ¼ g�k signk ðk 6¼ 0Þ; f 0 ¼ 0. ð38Þ

To process the results of model simulations (Section 5), a diagnostic equation for pressure inside the

domain is needed. The standard form for incompressible potential flow is
o2

ox2
þ o2

oy2

� �
p þ 1

2
U2

x þ U2
y

� �� �
¼ 0.
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In the new coordinates, it takes the form:
o2

on2
þ o2

of2

� �
p þ 1

2
J�1 U2

n þ U2
f

� �� �
¼ 0. ð39Þ
In the absence of capillarity, the upper boundary condition is p = pe. In all model simulations presented
herein the prescribed external surface pressure is constant. One may therefore assume
pðn; f ¼ 0; sÞ ¼ pe ¼ 0. ð40Þ

In principle, the distribution of surface pressure may be assigned as a function of n and s (what was used,
for example by Longuet-Higgins and Cokelet [38]). It is shown below that wave breaking occurs in an adi-

abatic case when initial conditions correspond to large enough energy. In a coupled wind–wave modeling

[6], the surface pressure pe is a product of solving the equations for air domain.
The lower boundary condition readily follows from the Lagrange integral written for the bottom in the

(non-dimensional) Cartesian coordinates: pz = �1. So in the new coordinates, one finds
zfpf ¼ �J at f ¼ � ~H . ð41Þ
For deep water, this condition becomes
pf ! �1 at f ! �1. ð42Þ
Note that, if for a given moment of time, the velocity potential is constant (the velocity field is identical
to zero), the solution to Eq. (39) with boundary conditions (40) and (41) (or, for deep water, (42)) is p = �f.
Thus, the new vertical coordinate f has a certain hydrodynamical sense: �f may be identified with general-

ized hydrostatic pressure which, by definition, is the pressure in the absence of motion (i.e. the absence of

dynamic pressure though not necessarily the state of hydrostatic equilibrium). It is convenient to present

the pressure field in terms of its deviation p + f from its generalized hydrostatic component; indeed, this

approach is adopted in Section 5.
3. Numerical solution of the principal equations

For spatial approximation of system (32) and (33) we use a Galerkin-type (or ‘‘spectral’’) method based

on a Fourier expansion of the prognostic variables with a finite truncation number M. The problem is thus

reduced to a system of ordinary differential equations for 4M + 2 Fourier coefficients gk(s), /k(s),
�M 6 k 6M:
_gk ¼ Ekðg�M ; g�Mþ1; . . . ; gM ;/�M ;/�Mþ1; . . . ;/MÞ; ð43Þ
_/k ¼ F kðg�M ; g�Mþ1; . . . ; gM ;/�M ;/�Mþ1; . . . ;/MÞ; ð44Þ
where Ek, Fk are, respectively, the Fourier expansion coefficients for the right-hand sides of Eqs. (32) and

(33) as functions of n.
To calculate Ek, Fk as functions of the prognostic variablesgk, /k, differentiation of the Fourier series is

used (the spatial derivatives are thus evaluated exactly) and the nonlinearities are calculated with the so-

called transform method [46,26]), by their evaluation on a spatial grid. If Y(u(n), m(n), w(n), . . .) is a nonlin-
ear function of its arguments, which are represented by their Fourier expansions, gridpoint values

u(nj), m(nj), w(nj), . . . are first calculated, that is inverse Fourier transforms are performed; after which

Y ( j) = Y(u(n( j)), m(n( j)), w(n( j)), . . .) are evaluated at each grid point. Finally, the Fourier coefficients Yk of

the function Y are found by a direct Fourier transform. Here n( j) = 2p(j � 1)/N, N is the number of
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gridpoints. This approach is exploited extensively in geophysical hydrodynamics, in global atmospheric

modeling particularly.

For the method to be a purely Galerkin one, that is to ensure the minimum mean square approximation

error, the Fourier coefficients Ek, Fk must be evaluated exactly for�M 6 k 6M. For this purpose, one

must choose
1 It i

routine

�bound
which
N > ðmþ 1ÞM ; ð45Þ

where m is the maximum order of nonlinearities. Since the right-hand sides of Eqs. (32) and (33) include

division by the Jacobian, the nonlinearity is of infinite order such that the above condition on N cannot

be met. However, numerical integrations show that if one chooses a value of N ensuring exact evaluation

of cubic nonlinearities (m = 3 in (45)), a further increase in N (with a fixed M) does not affect the numerical

solution. For the results presented in Section 5, N = 4.5M was taken.
However high the spectral resolution might be, long-term simulations of strongly nonlinear waves

one must parameterize the energy flux into the severed part of the spectrum (|k| > M). If ignored, spurious

energy accumulations at large wave numbers may corrupt the numerical solution. Simple dissipation terms

were added to the right-hand sides of Eqs. (43) and (44) for this purpose:
_gk ¼ Ek � lkgk; ð46Þ
_/k ¼ F k � lk/k ð47Þ
with
lk ¼
rM jkj�kd

M�kd

� �2

if jkj > kd ;

0 otherwise;

8<
: ð48Þ
where kd = M/2 and r = 0.25 were chosen for all the runs discussed below. We found the sensitivity of the re-
sults to reasonable variations of kd and r to be low. The dissipation effectively absorbs energy at wave numbers

close to the truncation numberM, while leaving longer waves virtually intact, and modes with wave numbers

|k| 6 kdunaffected.Note that an increase of the truncation numberM shifts the dissipation area to higherwave

numbers (and, withM ! 1, the energy sink due to dissipation tends to zero). Therefore, the scheme with the

dissipation described retains an approximation of the original (non-dissipative) system.

For time integration, the fourth-order Runge–Kutta scheme was used. The choice of the time step re-

quires special consideration. For any explicit time integration scheme, the stability criterion has the form:

Ds 6 Cx�1
max (if dissipation does not play a major role), where Ds is the time step, xmax is the maximum fre-

quency of the system and C is a constant depending on the scheme. For the Runge–Kutta scheme,

C ¼ 2
ffiffiffi
2

p
. For a broad variety of nonlinear problems of hydrodynamics, xmax may be estimated from

the linear theory: xmax ¼ ðxhli
k Þmax; the linear frequency can be found from the linear dispersion relation,

which in our case is
xhli
k ¼ chlik k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ rk3Þ tanh kH

q
; ð49Þ
where ðxhliÞmax ¼ xhli
M . However, this approach is impractical (perhaps rendering the scheme unstable) in

our case because of strong nonlinear effects – short bound waves1 propagating with the phase speed of long-

er free waves. (These effects are extensively considered in ChSh, Section 6.) Instead, an estimate of xmax
s well known that in a real wave field the dominate waves have more or less sharp crests and gentle troughs. Naturally, when a

Fourier presentation is used, to approximate such waves, additional modes are needed. These modes are sometimes called

waves�. This unfortunate expression obscures the essence of the phenomena: real waves evidently are single nonlinear modes,

retain their individuality over time.
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suitable for the stability criterion is xmax � ðchlik ÞmaxM (for deep-water gravity waves this yields

xmax � chli1 M ¼ M , whereas xhli
max ¼

ffiffiffiffiffi
M

p
). We note that this estimate is sometimes excessively stringent as

a basis for choice of Ds; indeed, the correct relation is xmax ¼ c½fw�maxM , where c[fw] are (linear) phase speeds

of free (carrier) waves capable of having associated bound waves. Such waves may not exist for all the wave

numbers. For example, the simulated wave field has only a small portion of energy at wave numbers less
than k0. If chlik is a decreasing function of k (as with pure gravity waves), one may use the estimate

xmax � chlik0
M , since wave numbers smaller than k0 do not carry bound waves, whereas wave numbers great-

er than k0 have lower phase speeds. For deep-water gravity waves, this yields xmax � M=
ffiffiffiffiffi
k0

p
; this estimate

is used for the choice of Ds in the model runs with a narrow initial energy spectrum (Section 5, cases of

amplitude and phase modulation).

A separate problem is initial data – normally given in the Cartesian coordinates. These must be con-

verted to the (n, f) coordinates. For this purpose, an iterative algorithm based on spline fifth-order func-

tions has been developed which carries out the transformation with computer accuracy.
All cases considered in this paper the capillarity was absent, what makes the problem to be invariant to

scale transformations.
4. Model validation

4.1. Validation against progressive waves

Progressive waves are solutions of the principal equations (16)–(18) (or, equivalently, (1)–(3)) with a con-

stant external pressure pe, and stationary in a moving coordinate system. The velocity of its motion is the

progressive wave�s phase speed. If such solutions are known a priori they can be used as an effective tool for

validation of the model.

It is only for the case of pure capillary or Crapper�s waves [15] that such solutions can be written ana-

lytically. Other stationary solutions, first of all Stokes waves (progressive pure gravity waves on deep water)

have previously been obtained with various degrees of approximation. The most accurate algorithm was

developed by Drennan et al. [24]. To obtain stationary solutions with computer accuracy (crucial for the
purpose of model validation), we developed an iterative algorithm that is based on operators of integration

and generalized Hilbert transformation in Fourier space. It employs the Fourier transform method to cal-

culate nonlinearities. This algorithm is described in detail in ChSh (Section 3) and in [50], both of which

present the results for deep-water gravity and gravity-capillary waves. In the latter, results for the case

of finite depth also are obtained. These solutions as well as Crapper�s waves may be considered exact –

and were used for validation of the non-stationary model (system (32), (33)).

Employment of the periodicity condition (5) for the velocity potential (rather than the weaker condition

of periodicity for the velocity components) assumes a zero mean velocity at the lower boundary. From this
it follows that the mean over x velocity is zero at any level z that does not intersect the surface. Conse-

quently, a progressive wave is not stationary in the model�s coordinate system but propagates with a specific

phase velocity. Such waves were simulated starting from initial conditions obtained as stationary solutions

in a moving (bound to phase of the wave) coordinate system. If the resolution in the horizontal is high en-

ough, and if the simulated wave is stable with respect to truncation errors, it should propagate indefinitely

without changes of shape, and its phase velocity should be equal to its a priori known exact value. The

model was validated against three types of waves: pure capillary deep-water (Crapper�s) waves (which

are analytical solutions); pure gravity and gravity-capillary waves derived numerically with the algorithm
referred to above. Note that such validation is quite informative, since a non-stationary simulation ‘‘does

not know’’ that the stationary solution obtained in a moving coordinate system with a different method

must be a progressive wave in a resting coordinate system.
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A detailed discussion of long-term validation runs can be found in ChSh. For all test cases, visual

comparison of instantaneous wave profiles obtained during the simulations showed that the wave pro-

files moved with no spurious perturbations. To estimate ‘‘steadiness’’ of the numerical solution quan-

titatively, we calculated the phase velocities and amplitudes of the Fourier components for

consecutive moments of time and obtained their temporal means and standard deviations over the per-
iod of integration. Results in ChSh (Table 4) show that even in the cases of steep waves, the calculated

phase velocities were very close to their exact values (i.e. those obtained for the stationary solutions) for

all three types of waves. Since conservation of the amplitudes was also very accurate (deviations of val-

ues during the simulations from their initial values retained less than 10�7 for the Stokes wave, and less

than 10�11 for the capillary and gravity-capillary waves), the modes retained their initial energies and

remained consistent in phase. Consequently, the simulated waves did not change their shapes during the

integration. This result confirms that these waves are stable with respect to truncation errors, and that

the numerical solutions yielded by the model approximate the solutions of the original differential equa-
tions with high accuracy.

It is known that for a precise description of steep Stokes waves a very large number of modes is

needed [24]. An algorithm for precise calculation of Stokes waves based on conformal mapping was

developed in ChSh. We used this algorithm for calculation of steep Stokes waves with an accuracy

10�11. Here we present some new results on validation of our scheme by simulating very steep Stokes

waves with amplitudes a = 0.42 and a = 0.427 (a is a half of the trough-to-crest height). M = 1000,

Ds = 0.001 was used for numerical integration for the case ak = 0.42, and M = 4000, Ds = 0.0005 for

the case a = 0.427. The number of Fourier modes (constituents of Stokes wave), providing such accu-
racy, was about 100 and 150, correspondingly. Evolution of those Fourier amplitudes ak of different

constituents of Stokes wave which exceed 10�7 is shown in Fig. 1. In the first case, the Fourier ampli-

tudes remain constant with very high accuracy. Slight oscillations of the Fourier amplitudes in the case

of a = 0.427 reflect the approach to the critical value of a = acr � 0.429 corresponding to the Stokes

wave with the maximum energy. For a > acr, Stokes waves exhibit unsteadiness, this is manifested in

the finite-amplitude oscillations of the Fourier components (but not in breaking, as observed in the

cases of a = 0.43 and a = 0.44, (not shown here) and is irrelevant for validation purposes). These inte-

grations can be continued indefinitely without noticeable changes of the amplitudes or of the shape of
the simulated Stokes wave for the case a = 0.42 and without changing the modulations for the case

a = 0.427. Note that Dold�s [19] simulation of the Stokes wave a = 0.42 collapse quickly.) Not unpre-

dictably, for Stokes waves with amplitudes a < 0.42 the stability of solution is larger. For example,

for a = 0.35 (M = 1000, Ds = 0.001), integration continued through several thousands periods of Stokes

wave without noticeable fluctuations of amplitudes up to k = 500. Formally, stationary solution can be

obtained also for a = 0.44. If such wave is used as a boundary condition in the non-stationary problem,

the irregular oscillations arise in the vicinity of sharp crests. These oscillations finally disappear due to

smoothing (48). After this moment, the wave remains virtually unchanged.

4.2. Convergence of the numerical solutions

If the proper stability requirements are met for a given initial condition, the numerical solutions obtained

on a finite time interval should converge to the exact solution when the spatial resolution (truncation num-

ber M) goes to infinity. A model solution is trustworthy, if it does not differ markedly from solutions start-

ing with the same initial condition obtained with higher resolutions. For all simulations described in the

next section, we compared the results with those obtained with a doubled truncation number M. Except
where we intentionally chose a too low resolution (see discussion of the special case in run 6, in the next

section), the differences between the solutions presented and their versions obtained with M twice as large

were negligible. This indicates that the corresponding wave profiles visually coincided for all moments of



Table 1

Characteristics of numerical experiments

Run no. 1 2 3 4 5 6

Initial conditions h = 0.5cosx h = 0.3sinx h = 0.28cosx h = 0.27cosx h = 0.01(cos10x + cos11x) h = 0.04cos(5x + sinx)

Resolution M = 3072,

N = 13824

M = 6144,

N = 27648

M = 3072,

N = 13824

M = 1536,

N = 6912

M = 12288,

N = 55296

M = 3072,

N = 13824

Time step Dt = 5 · 10�4 Dt = 2.5 · 10�4 Dt = 5 · 10�4 Dt = 10�3 Dt = 5 · 10�4 Dt = 10�3

Integration time T = 3.15 T = 5.58 T = 7.11 T = 500 T = 51.01 T = 37.44

Comments Breaking Breaking Breaking No breaking Breaking Breaking
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time shown in the figures – actually, during the entire integration periods excepting a very brief interval

immediately preceding collapse of the solution, due to wave breaking.

Given a sufficiently high resolution, the numerical integrations presented here were capable of simulating

individual wave breaking events. Such an event causes termination of the potential flow solution. The
numerical dissipation (47) and (48) had negligible impact on energy; if not, differences from the higher res-

olution integrations would not have been insignificant. In contrast, model dissipation in the long-term sim-

ulations of multi-mode wave fields discussed in ChSh (Section 6) prevented some weak wave breaking

events and, thus actually served as a parameterization of wave breaking. Still, if energy and steepness is

large enough, the dissipation (46)–(48) is ineffective. It is why we made an attempt to introduce additional

highly selective smoothing algorithm, which we briefly discuss in Section 6. The cases, which were termi-

nated by instabilities exhibited the noticeable growth of high frequency part of spectrum, affected by dis-

sipation (46)–(48). The waves approaching to breaking will imminently break, but precise moment of
termination depends at some degree on resolution and time step of the scheme. For this reason, conver-

gence in terms of instantaneous wave profiles could not take place for numerical solutions affected by dis-

sipation, although the integral and spectral characteristics that were under investigation did conserve with a

resolution increase.
5. Simulation of steep waves

The authors applied the method here described to simulate the nonlinear evolution of deep-water gravity

waves (with the external pressurepe = 0) and the initial stages of their breaking.2 Two groups of model runs

were carried out (Table 1): integrations starting from monochromatic waves of different amplitudes (runs

1–4), then with the initial wave profiles representing amplitude (run 5) and phase (run 6) modulation. For

cases 1–6 the wave period was about 2p; for cases 5 and 6 linear estimations for group periods were 40.7

and 5.1, respectively.

Integration time T in the table may be compared with periods of the simulated waves. In linear approx-

imation, these periods are: 2p for runs 1–4, 2p=
ffiffiffiffiffi
10

p
for run 5, and 2p=

ffiffiffi
5

p
for run 6. For all runs except run

4, T is the time for collapse of the numerical solution is closely identified with the time of existence of the

potential flow solution (see discussion of convergence, previous section). For the solution in run 4, the time

of existence is infinity.

For all cases, the initial surface velocity potential was constrained, so that, in linear approximation, the

waves would propagate in the positive direction. According to linear theory for pure gravity waves (r = 0)
2 Obviously, a breaking wave, as a solution to the potential flow equations, a breaking wave only exists for a limited time interval. A

potential flow model is thus unable to reproduce later stages of wave breaking that occur after the potential flow solution collapses and

the actual flow becomes rotational and turbulent.



Fig. 2. Surface profiles, velocity vector fields (scaled by the linear phase velocity of the base wave shown at the left upper corner of each

panel) and deviations of pressure from its generalized hydrostatic component (contour lines) for the initially monochromatic wave with

maximum slope a = 0.5 (run 1). Times t indicated in right upper corners.
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on deep water (H = 1), this is ensured by the following relations for the Fourier coefficients of the initial

data:3
3 See

velocit

horizo

linear
/k ¼ g�ksignðkÞ=
ffiffiffiffiffi
jkj

p
. ð50Þ
ChSh for the general case of finite-depth gravity-capillary waves. Here /k and gk are the Fourier coefficients of the surface

y potential and surface height, respectively. The Fourier expansion is that over the Cartesian coordinate x, rather than the new

ntal coordinate n (cf. (11) and (21)). However, there is no difference between the two types of expansion from the point of view of

theory.
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As a test of the model�s ability to simulate the evolution of very large waves, we first chose initial data

chose was somewhat unrealistic, namely a monochromatic wave with the maximum slope (non-dimensional

amplitude) a = max(hx) = 0.5. The results are shown in Fig. 2, where the instantaneous surface height pro-

files, velocity fields, and deviations of pressure from its generalized hydrostatic component (i.e. p + f,
according to Section 2) are depicted for different moments of time. Initial conditions are shown in the upper
panel; the middle panel corresponds to the moment when the maximum slope max|hx| becomes infinite (the

overturning begins). The lower panel represents a condition approaching collapse, with overturning already

in an advanced stage. Note the pressure ‘‘bubble’’ in the middle panel, which becomes somewhat less pro-

nounced later, when the ‘‘excessive mass’’ of the overturning crest is on the merge of release. As well, results

also illustrate a further advantage of the conformal mapping method: ability to reproduce surface height

profiles that are multi-valued functions of the horizontal coordinate x. This becomes possible because, with

f = 0, formulae (9) and (10) serve as a parametric representation of the surface.

In Fig. 3, the same instantaneous fields are presented for the case of the initially monochromatic wave,
with a = 0.3 (run 2). This wave, too, eventually breaks but only a relatively small portion of mass near the

peak that overturns. Unlike the previous case, when the overturning begins (t = 5.45) the crest sharpens

dramatically, rendering the overturning stage short-lived; simulation of this effect required a higher resolu-

tion than in run 1. The middle panel of Fig. 3 depicts the wave well before its overturning but with a high-

pressure area beneath the crest well developed along with other features of nonlinear behavior – such as

sharpening of the crest, increasing height (more than 1.6 times initial value), and large velocities at the crest.

The lower panel represents a short period between the beginning of overturning and collapse of the solu-

tion. At this stage, as well as during the breaking stage in run 1, the velocities at the crest exceed the (linear)
phase velocity by 1.1–1.3 times.

Time evolution of the maximum slope max|hx|, maximum velocity max jV!j ¼ max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

x þ U2
z

q� �
, max-

imum surface height max(h), and the wave height Dh = max(h) � min(h) is shown in Figs. 4 and 5 for the

cases of initially monochromatic waves with a = 0.28 (run 3) and a = 0.27 (run 4). Again, both waves�
behavior is highly nonlinear, and, during an initial stage of about one wave period, each exhibits quanti-

tatively similar growth, a steepening, and acceleration at the crest. However, whereas this initial evolution

results in breaking for the former similar to run 2, the latter wave survives its climax. Its characteristics

reverse their tendencies to reach a low close to initial values and, then, continue to oscillate in a quasi-

periodic manner. This suggests that for initially monochromatic waves, the critical value a* of the initial

amplitude (such that waves with a > a* eventually break whereas those with a < a* do not) lies between

0.27 and 0.28.4 Note that these conclusions were obtained with a high resolution scheme, and influence

of dissipation shifted to very high frequencies was negligible.
The wave in run 4 is thus close to the highest non-breaking initially monochromatic wave. It is worth

mentioning that the maxima of height Dh (about 0.62, see the lowest panel, Fig. 4), let alone its initial height
2a = 0.54, are considerably less than the height of the steepest Stokes wave (0.886) or the Stokes wave of

maximal energy (0.858). Likewise, the total energy of the wave in run 4 is only about 0.50 the maximum

energy of Stokes waves. So the latter�s characteristics cannot serve as breaking criteria.

It is noteworthy that for all simulations with initially monochromatic waves, growth of the maximum

surface height (crest height) max(h) significantly exceeded growth of the wave height Dh (see Figs. 2 and

3; cf. 3rd and 4th panels, Figs. 4 and 5) Sharpening of the crest was accompanied by a flattening of the
trough. The wave was thus increasing its skewness. For non-breaking waves, these processes turn out to

be fully reversible (run 4, Fig. 5). It is interesting that values of Jacobian less than J = 0.2 were never ob-

served. Hence, a division to J in Eqs. (33) and (34) did not play significant role in instability. On the con-
4 This estimate may be different if the initial velocity potential is not prescribed according to Eq. (50).



Fig. 3. Same as in Fig. 1 but with a = 0.3 (run 2).
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trary, very large values of J in vicinity of sharp crests (up to J = 100) were typical. It did not influence

directly the stability, but imposed the additional restrictions to time step Ds.
Runs 5 and 6 simulate nonlinear evolution of wave fields that have a relatively low initial maximum

slope max|hx| (0.209 and 0.239, respectively) and yet result in emergence of steep breaking waves. In run

5, the initial condition is a superposition of two monochromatic waves with the same amplitude and close

wave numbers; it may be rewritten as h = 0.02cos0.5xcos10.5x and so represents a ‘‘single’’ wave with

slowly changing amplitude. The results are presented in Fig. 6 (instantaneous fields) and Fig. 7 (time evo-

lution of geometric characteristics). Note that whereas a monochromatic wave overturns in about one wave



Fig. 4. Temporal evolution of geometric characteristics of the initially monochromatic wave with a = 0.28 (run 3): 1 – maximum slope

max|hx|; 2 – maximum velocity max jV!j; 3 – maximum surface elevation max(h); 4 – wave height Dh = max(h) � min(h).
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period or less (if ever), it takes some 26 wave periods for the modulated wave in run 5 to reach the breaking.
For the former case, an individual wave has enough initial energy to grow nonlinearly to break point. In the

latter, an individual wave that eventually breaks does not have a ‘‘critical’’ initial energy but, instead, grows

as a result of relatively slow energy redistribution along the wave train.

For run 6, the initial condition represents a phase (or frequency) modulation of the base wave with wave

number k = 5. The results (Figs. 8 and 9) are similar to those for amplitude modulation (run 5): redistribu-

tion of energy along the wave train which continues for many periods of the base wave (13 periods, run 6).



Fig. 5. Same as in Fig. 4 but with a = 0.27 (run 4).
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This effect is clearly seen in Figs. 6 and 8; eventually it brings about formation of a very high breaking wave
having a sharp crest where velocity exceeds the phase velocity. A deep trough follows, a high pressure area

is formed under the crest, and the maximum surface elevation becomes about twice as large as its initial

value (Figs. 6 and 8, lower panel).

A special feature of run 6 is that numerical simulation survives the first wave breaking event (Fig. 8,

2nd panel; note the corresponding maxima of geometric characteristics in Fig. 9). The critical stage be-

gins at t � 32.5; the exact solution, for which the numerical solution with M = 12288 proves a close

approximation, collapses at t = 33.16. However, this turns out to be a ‘‘mini-breaking’’ that affects only

a tiny portion of the top of a sharp crest. A coarser resolution M = 3072, used in run 6, engenders



Fig. 6. Same as in Fig. 1 but a simulation starting from a base wave with an amplitude modulation (run 5).
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greater numerical dissipation and allows the wave to absorb this event with a release of energy as small

as 4 · 10�4 of its total value. Before the critical stage is reached, the solution practically coincides with

that obtained with higher resolution. The artificially lowered resolution allows authors to follow wave

train evolution beyond the first breaking, though with a lower accuracy. In Fig. 8 (3rd panel), the wave
that formerly underwent breaking has somewhat subsided, whereas the following wave has become both

sharper and higher. In the lowest panel, this wave exhibits a surface height maximum that is distinctly

greater than that reached during the first breaking (Fig. 9, lower panel), as the crest sharpens and accel-

erates dramatically. At this point (t = 37.40), the wave is already in breaking stage; the numerical solu-

tion finally collapses at t = 37.44.



Fig. 7. Temporal evolution of geometric characteristics for the simulation starting from a base wave with an amplitude modulation

(run 5): 1 – maximum slope max|hx|; 2 – maximum velocity max jV!j; 3 – maximum surface elevation max(h).
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6. Wave breaking

In recent years, great attention has been paid to effects of wave breaking. Our particular way of modeling

based on conformal mapping, allows us to approach very closely the breaking point where the potential

solution ceases to exist. In such cases, integration is always terminated. However, in this instance given

its high accuracy, the scheme is capable of following the developing physical instabilities very closely during

the entire period of existence of the potential solution. When overturning and breaking are investigated per

se, the phenomena is simulated explicitly up to collapse. Beyond this point, breaking evidently is non-

potential. And so the direct method is inapplicable to long-term simulations of wave fields with multiple

breaking events, in particular to coupled modeling of WBL and simulations of wave drag and energy ex-
change between wind and waves.

To make such simulations possible, we developed a method of parameterization of breaking effects based

on smoothing. Smoothing should be made locally in physical space. We explored many ways to parame-

terize this effect. The best scheme is based on a simple diffusion-type algorithm with the coefficient of dif-

fusion depending on the second horizontal derivative of the surface height:



Fig. 8. Same as in Fig. 1 but for the simulation starting from a base wave with a phase modulation (run 6).
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Fig. 9. The same as in Fig. 6 but for the simulation starting from a base wave with a phase modulation (run 6).
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where coefficient Cb is of the order of 10
�2, and the critical value of the second derivative s is of the order of

100. The empirical condition (53) is introduced to leave non-breaking waves unaffected. The algorithm

(51)–(53) does not change the volume but does decreases the energy and momentum (Figs. 10 and 11).

It is implicitly assumed that both the lost energy and momentum are transferred partly to the flow and

partly to turbulence (these transitions may be separated, as in [11]).
This parameterization of the impact of rotational breaking effects on the potential component of flow

allows us to prevent development of breaking. Further, this approach does not noticeably influence the

solution when breaking does not develop. We do not consider this algorithm as a final solution to the prob-

lem; however, as it cannot prevent the numerical solution from collapsing when initial steepness or energy is

very large. But for typical steepness of sea waves and in cases when growth of energy occurs relatively

slowly, the scheme works satisfactorily.

On average, 1-D wave spectrum S at high wave numbers in quasi-stationary regime decays as k�6�k�5 –

much faster than it was obtained for 2-D case. Numerical experiments performed by Onorato et al. [45])
based on a Dommermuth and Yue [22] scheme obtained that S decaying as k�2.5 for 2-D waves. Differences

such as these arise because the nonlinearity in 1-D waves is much weaker that for 2-D waves. Fast decaying

of the spectrum for 1-D waves is a primary disadvantage of 1-D approach.



Fig. 10. Fragment of a wave surface affected by breaking adjustment algorithm: thick line is surface at t = 2.16 with no breaking

adjustment; thin line is surface at the same moment but simulated with breaking adjustment.

Fig. 11. Spectrum of waves at t = 2.16: thick line – no breaking adjustment; thin line – with included breaking adjustment.
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7. Discussion and conclusions

In this study, we applied the method for numerical simulation of surface waves developed in ChSh to

modeling of steep gravity waves in deep water. The principal equations are the standard equations of

hydrodynamics for potential flow with a free surface. The method is based on a non-stationary conformal

transformation that maps the original domain (which may be of finite or infinite depth) onto a domain with
a fixed rectilinear upper boundary; for the stationary problem, the method is identical with the classic com-

plex variable method. In the transformed coordinates, the solution to the Laplace equation for the velocity

potential is written out as a Fourier series, which eliminates the need for a finite-difference approximation

of spatial derivatives, thus reducing the problem to 1-D. Numerical solution of the initial value problem for

the transformed system thus proves straightforward, reduced to time integration of two simple evolutionary

equations for the surface velocity potential and surface height. These variables are represented by their

Fourier expansions with time-dependent coefficients. The Fourier transform method used for calculation

of the nonlinear terms provides high computational efficiency; the number of arithmetic operations per time
step is of the order M lnM, whereM is the truncation number. Rigorous validation of this method included

tests on convergence of the numerical solutions with M ! 1 as well as long-term runs with initial condi-
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tions taken from a priori known progressive wave solutions. The results of these tests allow us, for any

practical purpose, to identify the numerical solutions considered in this paper with exact solutions – almost

up to the moment when the (exact) solution collapses because due to wave breaking. The method is appli-

cable to simulation of the initial stage of wave overturning, when the surface becomes a multi-valued func-

tion of the (Cartesian) horizontal coordinate.
Evolution of an initially monochromatic wave is one of the simplest examples of nonlinear interaction.

Our simulations show that such waves exhibit growth in height, still greater growth of crest height, a sharp-

ening and acceleration of the crest, and a flattening of the trough. With the initial maximum slope a 6 0.27,

such waves do not break; further, the behavior of their geometric characteristics is quasi-periodic in time.

Accordingly, these tendencies are fully reversible. If a P 0.28, the process results in wave breaking, which

occurs within about one wave period or less. The overturning is well reproduced in the simulations and is

especially impressive for larger waves - reminiscent a ‘‘wall of water’’, reported by sailors. The quantitative

estimate of the critical a may depend on exactly how we define the velocity potential of the initial mono-
chromatic wave; in this case, the potential was represented by one Fourier component (as was the surface

height) whose phase was determined so that the wave propagated in one direction.

Also considered were two cases of wave fields with more complex initial conditions. One was two Fourier

components with close wave numbers, that is a base wave with an amplitude modulation. The other initial

condition was a base wave with a phase modulation. Both simulations were characterized by a redistribu-

tion of energy along the wave train, a process which persisted for many periods and resulted in formation of

large steep breaking waves having sharp crests. Qualitatively, the outputs described are close to observed

extreme waves [40].
The model herein developed may be applied to a broad range of situations where the 1-D approximation

is acceptable. Unless proper parameterizations are used, it cannot be used to simulate processes in which

weak (irreversible) 2-D nonlinear interactions are of essence. However, many wave phenomena are con-

trolled largely by strong nonlinear interactions which are relatively fast and for which the 1-D approxima-

tion is often adequate. Formation of extreme waves is one such phenomena. We emphasize that model

simulations of these waves exceeds far academic interest only. It has long been known that nonlinear redis-

tribution of energy is characteristic for wave trains and may, on occasion, result in sudden emergence of

very large, steep waves known as freak or rogue waves. Amplitude and phase modulations create especially
favorable conditions for the formation of such waves. The case studies carried out in this paper illustrate

the model�s ability to simulate these phenomena.

Other applications of the scheme developed here include simulations of multi-wave fields, including cou-

pled modeling of waves and a wave boundary layer [6], and studies of shallow water waves [50].
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